Intensity-Modulated Radiation Therapy (IMRT) of the Prostate

Radiation therapy is an integral component in the treatment of prostate cancer. Intensity-modulated radiation therapy (IMRT) has been proposed as a method of radiation therapy that allows adequate radiation therapy to the tumor while minimizing the radiation dose to surrounding normal tissues and structures.

For prostate cancer, radiation therapy is one accepted option for treatment. Other treatment options include surgery, hormonal treatment, and watchful waiting.

Radiation techniques

Conventional external-beam radiation therapy. Over the past several decades, methods to plan and deliver radiation therapy have evolved in ways that permit more precise targeting of tumors with complex geometries. Most early trials used 2-dimensional treatment planning based on flat images and radiation beams with cross-sections of uniform intensity that were sequentially aimed at the tumor along 2 or 3 intersecting axes. Collectively, these methods are termed “conventional external beam radiation therapy”.

3-dimensional conformal radiation (3D-CRT). Treatment planning evolved by using 3-dimensional images, usually from computed tomography (CT) scans, to delineate the boundaries of the tumor and discriminate tumor tissue from adjacent normal tissue and nearby organs at risk for radiation damage. Computer algorithms were developed to estimate cumulative radiation dose delivered to each volume of interest by summing the contribution from each shaped beam. Methods also were developed to position the patient and the radiation portal reproducibly for each fraction and immobilize the patient, thus maintaining consistent beam axes across treatment sessions. Collectively, these methods are termed 3-dimensional conformal radiation therapy (3D-CRT).

Intensity-modulated radiation therapy (IMRT). IMRT, which uses computer software and CT and magnetic resonance imaging (MRI) images, offers better conformality than 3D-CRT, as it is able to modulate the intensity of the overlapping radiation beams projected on the target and to use multiple shaped treatment fields. It uses a device (a multileaf collimator, MLC) which, coupled to a computer algorithm, allows for “inverse” treatment planning. The radiation oncologist delineates the target on each slice of a CT scan and specifies the target’s prescribed radiation dose, acceptable limits of dose heterogeneity within the target volume, adjacent normal tissue volumes to avoid, and acceptable dose limits within the normal tissues. Based on these parameters and a digitally reconstructed radiographic image of the tumor and surrounding tissues and organs at risk, computer software optimizes the location, shape, and intensities of the beams ports, to achieve the treatment plan’s goals.

Increased conformality may permit escalated tumor doses without increasing normal tissue toxicity and thus may improve local tumor control, with decreased exposure to surrounding normal tissues, potentially reducing acute and late radiation toxicities. Better dose homogeneity within the target may also improve local tumor control by avoiding underdosing within the tumor and may decrease toxicity by avoiding overdosing.
Intensity-Modulated Radiation Therapy (IMRT) of the Prostate

Since most tumors move as patients breathe, dosimetry with stationary targets may not accurately reflect doses delivered within target volumes and adjacent tissues in patients. Furthermore, treatment planning and delivery are more complex, time-consuming, and labor-intensive for IMRT than for 3D-CRT. Thus, clinical studies must test whether IMRT improves tumor control or reduces acute and late toxicities when compared with 3D-CRT.

Methodologic Issues in IMRT research

Multiple-dose planning studies have generated 3D-CRT and IMRT treatment plans from the same scans, then compared predicted dose distributions within the target and in adjacent organs at risk. Results of such planning studies show that IMRT improves on 3D-CRT with respect to conformality to, and dose homogeneity within, the target. Dosimetry using stationary targets generally confirms these predictions. Thus, radiation oncologists hypothesized that IMRT may improve treatment outcomes compared with those of 3D-CRT. However, these types of studies offer indirect evidence on treatment benefit from IMRT, and it is difficult to relate results of dosing studies to actual effects on health outcomes.

Comparative studies of radiation-induced side effects from IMRT versus alternative radiation delivery are probably the most important type of evidence in establishing the benefit of IMRT. Such studies would answer the question of whether the theoretical benefit of IMRT in sparing normal tissue translates into real health outcomes. Single-arm series of IMRT can give some insights into the potential for benefit, particularly if an adverse effect that is expected to occur at high rates is shown to decrease by a large amount. Studies of treatment benefit are also important to establish that IMRT is at least as good as other types of delivery, but in the absence of such comparative trials, it is likely that benefit from IMRT is at least as good as with other types of delivery.

Related policies:

- Intensity-Modulated Radiation Therapy (IMRT) of the Chest
- Intensity-Modulated Radiation Therapy (IMRT) of the Head and Neck
- Intensity-Modulated Radiation Therapy (IMRT) of the Abdomen and Pelvis
- Intensity-Modulated Radiation Therapy (IMRT) of the Central Nervous System
- Intensity-Modulated Radiation Therapy (IMRT) for Sarcoma of the Extremities
- Maximum Units of Service

***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician.

Policy

BCBSNC will provide coverage for Intensity-Modulated Radiation Therapy (IMRT) of the Prostate when it is determined to be medically necessary because the medical criteria and guidelines shown below have been met.

Benefits Application

This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy.

When Intensity-Modulated Radiation Therapy (IMRT) of the Prostate is covered

Intensity-modulated radiation therapy (IMRT) may be considered medically necessary in the treatment of prostate cancer when the following criteria are met:

A. In patients with localized prostate cancer who will receive definitive dose escalated external beam radiation therapy at prescribed radiation doses of 75 to 80 Gy.
Intensity-Modulated Radiation Therapy (IMRT) of the Prostate

B. In patients who are status-post prostatectomy with evidence of local recurrence, who will be receiving salvage radiation therapy at a prescribed dose of 66 Gy or more to the prostate bed.

C. In patients who are status-post prostatectomy who are at high risk for recurrence due to extracapsular extension, pathologic T3 disease, seminal vesicle invasion, positive margins and/or positive nodes, who will receive adjuvant (post-operative) radiation therapy at a prescribed dose of at least 66 Gy to the prostate bed and/or pelvis.

D. In conjunction with permanent transperineal implantation of radioactive seeds, when 3D-CRT planning is not able to meet dose volume constraints for normal tissue tolerance, and IMRT planning is able to meet dose volume constraints.

E. In conjunction with high-dose rate temporary brachytherapy when 3D-CRT planning is not able to meet dose volume constraints for normal tissue tolerance, and IMRT planning is able to meet dose volume constraints.

When Intensity-Modulated Radiation Therapy (IMRT) of the Prostate is not covered

Intensity-modulated radiation therapy (IMRT) of the prostate is considered investigational for other indications not listed above.

Policy Guidelines

The evidence for IMRT in individuals who have localized prostate cancer and are undergoing definitive RT includes largely of retrospective cohort studies, case series, and systematic reviews. Relevant outcomes are overall survival, disease-free survival, quality of life, and treatment-related morbidity. Although there are few comparative controlled trials, the evidence generally shows that IMRT provides tumor control and survival outcomes similar to 3-dimensional conformal radiotherapy (3D-CRT). Treatment planning studies predict that IMRT improves target volume coverage and sparing of adjacent organs compared to 3D-CRT; however, the present evidence shows only similar survival outcomes. Notably, some studies have shown reductions in gastrointestinal and genitourinary toxicity with IMRT. A reduction in clinically significant complications of RT is likely to improve quality of life for treated patients. The evidence is sufficient to determine qualitatively that the technology results in a meaningful improvement in the net health outcome.

The evidence for IMRT in individuals who have prostate cancer and are undergoing RT after prostatectomy includes mostly phase 2 trials and both prospective and retrospective series of consecutive patients. Relevant outcomes are overall survival, disease-free survival, quality of life, and treatment-related morbidity. Although the comparative studies are limited to case series, the evidence generally shows that IMRT provides tumor control and survival outcomes similar to 3D-CRT. Although treatment planning studies predict that IMRT improves target volume coverage and sparing of adjacent organs compared to 3D-CRT, the present evidence shows only similar survival outcomes. Notably, a small series found a significant improvement in acute gastrointestinal toxicity with IMRT than with 3D-CRT, mainly due to better bowel sparing with IMRT. A reduction in clinically significant complications of RT is likely to improve quality of life for treated patients. The evidence is sufficient to determine qualitatively that the technology results in a meaningful improvement in the net health outcome.

CPT 77338 is reported once per IMRT plan and is limited to 3 units per 60 day treatment course.

Billing/Coding/Physician Documentation Information

An Independent Licensee of the Blue Cross and Blue Shield Association
Intensity-Modulated Radiation Therapy (IMRT) of the Prostate

This policy may apply to the following codes. Inclusion of a code in this section does not guarantee that it will be reimbursed. For further information on reimbursement guidelines, please see Administrative Policies on the Blue Cross Blue Shield of North Carolina web site at www.bcbsnc.com. They are listed in the Category Search on the Medical Policy search page.

Applicable codes: 0438T, 77301, 77338, 77385, 77386, G6015, G6016

BCBSNC may request medical records for determination of medical necessity. When medical records are requested, letters of support and/or explanation are often useful, but are not sufficient documentation unless all specific information needed to make a medical necessity determination is included.

Scientific Background and Reference Sources

Senior Medical Director review, 3/2010

Senior Medical Director Review, 10/2010

Specialty Matched Consultant Advisory Panel 8/2012

Policy Implementation/Update Information

12/21/09 New policy issued. Intensity-modulated radiation therapy (IMRT) may be considered medically necessary in the treatment of localized prostate cancer in patients who will receive definitive dose escalated external beam radiation therapy at prescribed radiation doses of 75 to 80 Gy. Notification.

12/21/09 Effective date 3/30/10. (adn)

6/22/10 Specialty Matched Consultant Advisory Panel review 5/24/10. No changes to policy statement. Medical policy number removed. (lpr)

11/9/10 Under “When Covered” section added the following statements: Intensity-modulated radiation therapy (IMRT) may be considered medically necessary in the treatment of prostate cancer when the following criteria are met: A. In patients with localized prostate cancer who will receive definitive dose escalated external beam radiation therapy at prescribed radiation doses of 75 to 80 Gy. B. In patients who are status-post prostatectomy with evidence of local recurrence, who will be receiving salvage radiation therapy at a prescribed dose of 66Gy or more to the prostate bed. C. In patients who are status-post prostatectomy who are at high risk for recurrence due to extracapsular extension, pathologic T3 disease, seminal vesicle invasion, positive margins and/or positive nodes, who will receive adjuvant Y(post-operative) radiation therapy at a prescribed dose of at least 66Gy to the prostate bed and/or pelvis. Under “When Not Covered” section deleted the statement “post-prostatectomy patients.” Reviewed with medical director. (lpr)

9/30/11 Specialty Matched Consultant Advisory Panel review 8/31/2011. No changes to policy statement. (lpr)

11/13/12 Description section and Policy Guidelines extensively revised. Under “When Covered” added new indications: In conjunction with permanent transperineal implantation of radioactive seeds when 3D-CRT planning is not able to meet dose volume constraints for normal tissue tolerance and In conjunction with high-dose rate temporary brachytherapy when 3D-CRT planning is not able to meet dose volume constraints for normal tissue tolerance. Specialty Matched Consultant Advisory Panel review 8/15/2012. (lpr)

6/11/13 Specialty Matched Consultant Advisory Panel review meeting 5/15/2013. No change to policy statement. Reference added. (lpr)

7/29/14 Specialty matched consultant advisory panel review meeting 6/24/2014. No change to policy statement. Reference added. (lpr)
Intensity-Modulated Radiation Therapy (IMRT) of the Prostate

12/30/14 Added CPT codes 77385, 77386 and HCPCS codes G6015, G6016; Deleted CPT codes 77418, 0073T from Billing/Coding section effective 1/1/2015 for code update. Under Related Policies, changed title IMRT of Breast and Lung to IMRT of Chest. (lpr)

7/1/15 Under Policy Guidelines section added the statement: “CPT 77338 is reported once per IMRT plan and is limited to 3 units per 60 day treatment course.” Also added “Maximum Units of Service” to Related Policies under Description section. Reference added. Specialty Matched Consultant Advisory Panel review 5/27/2015. No change to policy statement. (lpr)

10/30/15 Reference added. No change to policy statement. (lpr)

7/1/16 Policy Guidelines updated. Specialty Matched Consultant Advisory Panel review 5/25/2016. Reference added. No change to policy statement. CPT code 0438T added to the Billing/Coding section effective 7/1/16. (lpr)

8/30/16 Reference added. No change to policy statement. (lpr)

6/30/17 Specialty Matched Consultant Advisory Panel review 5/31/17. No change to policy statement. (lpr)

Medical policy is not an authorization, certification, explanation of benefits or a contract. Benefits and eligibility are determined before medical guidelines and payment guidelines are applied. Benefits are determined by the group contract and subscriber certificate that is in effect at the time services are rendered. This document is solely provided for informational purposes only and is based on research of current medical literature and review of common medical practices in the treatment and diagnosis of disease. Medical practices and knowledge are constantly changing and BCBSNC reserves the right to review and revise its medical policies periodically.