Genetic Testing for Myeloproliferative Neoplasms

Somatic (acquired) genetic variants in \textit{JAK2}, \textit{MPL}, and \textit{CALR} genes have been implicated as the underlying molecular genetic drivers for the pathogenesis of myeloproliferative neoplasms (MPNs). This policy addresses the use of genetic testing of \textit{JAK2} and \textit{CALR} genes for the diagnosis, prognosis, and treatment selection in patients with MPNs.

\textbf{Myeloproliferative Neoplasms}

Myeloproliferative neoplasms (MPNs) are rare overlapping blood diseases characterized by the production of one or more blood cell lines. The most common forms of MPNs include chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF), systemic mastocytosis, chronic eosinophilic leukemia, and others. A common finding in many of the MPNs is clonality, and a central pathogenic feature the detection of a somatic (acquired) pathogenic variant in disease-associated genes. Pathogenic variants in disease-associated genes result in constitutively activated tyrosine kinase enzyme or cell surface receptor.

\textbf{CML and Philadelphia Chromosome}

The paradigm for use molecular genetics to revolutionize patient management is CML. A unique chromosomal translocation, (the Philadelphia chromosome Ph) leads to a unique gene rearrangement (\textit{BCR-ABL}) creating a fusion gene that encodes for a constitutively active Bcr-abl fusion protein. These findings led to the development of targeted tyrosine kinase inhibitor drug therapy (imatinib) that produces long-lasting remissions.

\textbf{Ph Negative MPNs}

Diagnosis and monitoring of patients with Philadelphia chromosome, Ph negative MPNs have been challenging because many of the laboratory and clinical features of the classic forms of these diseases PV, ET, and PMF can be mimicked by other conditions such as reactive or secondary erythrocytosis, thrombocytosis or myeloid fibrosis. In addition, these entities can be difficult to distinguish on morphologic bone marrow exam, and diagnosis can be complicated by changing disease patterns: PV and ET can evolve into PMF or undergo leukemic transformation. World Health Organization (WHO) criteria were published as a benchmark for diagnosis in 2001 and updated in 2008. These have been challenging to use because they involve complex diagnostic algorithms, rely on morphologic assessment of uncertain consistency, and require tests that are not well standardized or widely available, such as endogenous erythroid colony formation.

\textbf{Molecular Genetics of Ph-Negative MPNs}

\textbf{JAK2 Gene}

The \textit{JAK2} gene, located on chromosome 9, contains the genetic code for making the Janus kinase 2
Genetic Testing for Myeloproliferative Neoplasms

protein, a nonreceptor tyrosine kinase. The Janus kinase 2 (JAK2) protein is part of the JAK/STAT signal transduction pathway that is important for the controlled production of blood cells from hematopoietic stem cells. Somatic (acquired) variants in the JAK2 gene are found in patients with PV (96%), ET (50%), and PMF (50%).

CALR Gene
The CALR gene, located on chromosome 19, contains the genetic code for making the calreticulin protein, a multifunctional protein located in the endoplasmic reticulum, cytoplasm, and cell surface. The calreticulin protein is thought to play a role in cell growth and division and regulation of gene activity. Somatic variants in the CALR gene are associated with ET and PMF.

MPL Gene
The MPL gene, located on chromosome 1, contains the genetic code for making the thrombopoietin receptor, a cell surface protein that stimulates the JAK/STAT signal transduction pathway. The thrombopoietin receptor is critical for the cell growth and division of megakaryocytes, which produce platelets involved in blood clotting. Somatic variants in the MPL gene are associated with ET and PMF.

More than a dozen commercial laboratories currently offer a wide variety of diagnostic procedures for JAK2, CALR, and MPL testing. These tests are available as laboratory developed procedures under the U.S. Food and Drug Administration (FDA) enforcement discretion policy for laboratory developed tests. Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory –developed tests (LDTs) must meet the general regulatory standards of the Clinical Laboratory Improvement Act (CLIA), and laboratories that offer LDTs must be licensed by CLIA for high-complexity testing. To date, FDA does not require regulatory review of LDTs.

Related Policies:
Molecular Panel Testing of Cancers to Identify Targeted Therapies

***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician.

Policy

BCBSNC will provide coverage for genetic testing for myeloproliferative neoplasms when it is determined to be medically necessary because the medical criteria and guidelines shown below are met.

Benefits Application
This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy.

When Genetic Testing for Myeloproliferative Neoplasms is covered
Genetic testing (JAK2) for myeloproliferative neoplasms may be considered medically necessary in the diagnosis of patients presenting with clinical, laboratory, or pathological findings suggesting polycythemia vera (PV), essential thrombocythemia (ET), or primary myelofibrosis (PMF). Based on criteria from the World Health Organization, documentation of a serum erythropoietin level below the reference range for normal is recommended before JAK2 testing (See Policy Guidelines).
Genetic Testing for Myeloproliferative Neoplasms

*MPL* and *CALR* testing may be considered **medically necessary** in the diagnosis of patients presenting with clinical, laboratory, or pathologic findings suggesting essential thrombocythemia or primary myelofibrosis.

**When Genetic Testing for Myeloproliferative Neoplasms is not covered**

Genetic testing (*JAK2, MPL and CALR*) for myeloproliferative neoplasms may be considered **investigational** in all other circumstances including, but not limited to, the following situations.

- Diagnosis of nonclassic forms of myeloproliferative neoplasms (MPNs)
- Molecular phenotyping of patients with MPNs
- Monitoring, management, or selecting treatment in patients with MPNs

Panel testing for myeloproliferative disorders is considered **not medically necessary**.

**Policy Guidelines**

For individuals with a suspected MPN who receive genetic testing for *JAK2*, the evidence includes case series, retrospective studies, meta-analyses, and randomized control trials. Relevant outcomes include overall survival, disease-specific survival, test accuracy and validity, and resource utilization. For patients with suspected Philadelphia chromosome-negative (Ph-negative) MPN, *JAK2* variants are found in nearly 100% of those with polycythemia vera, 60% to 65% of those with essential thrombocythemia, and 60% to 65% of those with primary myelofibrosis. In individuals with suspected MPN, a positive genetic test for *JAK2* satisfies a major criterion for the 2016 World Health Organization classification for Ph-negative MPNs and eliminates secondary or reactive causes of erythrocytosis and thrombocythemia from the differential diagnosis. The presence of a documented *JAK2* variant may aid in the selection of ruxolitinib, a *JAK2* inhibitor; ruxolitinib, however, is classified as a second-line therapy. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals with a suspected MPN who receive genetic testing for *MPL*, the evidence includes case series and retrospective studies. Relevant outcomes include overall survival, disease-specific survival, test accuracy and validity, and resource utilization. For patients with suspected Ph-negative MPN, *MPL* variants are found in approximately 5% of those with essential thrombocythemia (ET) and primary myelofibrosis cases (PMF). In individuals with suspected MPN, a positive genetic test for *MPL* satisfies a major criterion for the 2016 World Health Organization classification for ET and PMF and eliminates secondary or reactive causes of thrombocythemia from the differential diagnosis. The goal of ET treatment is to alleviate symptoms and minimize thrombotic events and bleeding irrespective of *MPL* variant status. For PMF, hematopoietic cell transplantation is the only treatment with curative potential while most other treatment options focus on alleviation of symptoms. However, in both ET and PMF, establishing the diagnosis through *MPL* genetic testing does not result in changes in management that would be expected to improve net health outcome. Thus clinical utility has not been established. The evidence is insufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals with a suspected MPN who receive genetic testing for *CALR*, the evidence includes case series and retrospective studies. Relevant outcomes include overall survival, disease-specific survival, test accuracy and validity, and resource utilization. For patients with suspected Ph-negative MPN, *CALR* variants are found in approximately 20% to 25% of those with ET and PMF. For individuals with suspected MPN, a positive genetic test for *CALR* satisfies a major criterion for the WHO classification for ET and PMF and eliminates secondary or reactive causes of thrombocythemia from the differential diagnosis. The goal of ET treatment is to alleviate symptoms and minimize thrombotic events and bleeding irrespective of *CALR* variant status. For PMF, hematopoietic cell transplantation is the only treatment with curative potential while most other treatment options focus on alleviation of symptoms. However, in both ET and PMF, establishing the diagnosis through *CALR* genetic testing does not result in changes in management that would be expected to improve net health outcome.
Genetic Testing for Myeloproliferative Neoplasms

outcome. Thus clinical utility has not been established. The evidence is insufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Billing/Coding/Physician Documentation Information

This policy may apply to the following codes. Inclusion of a code in this section does not guarantee that it will be reimbursed. For further information on reimbursement guidelines, please see Administrative Policies on the Blue Cross Blue Shield of North Carolina web site at www.bcbsnc.com. They are listed in the Category Search on the Medical Policy search page.

*Applicable service codes: 0016U, 0017U, 81219, 81270, 81402, 81403, G0452*

BCBSNC may request medical records for determination of medical necessity. When medical records are requested, letters of support and/or explanation are often useful, but are not sufficient documentation unless all specific information needed to make a medical necessity determination is included.

Scientific Background and Reference Sources

**Tyrosine Kinase Mutation Analysis in Myeloproliferative Neoplasms**


Medical Director 6/2011


**JAK2 and MPL Mutation Analysis in Myeloproliferative Neoplasms**


Medical Director – 3/2012


**Genetic Testing for Myeloproliferative Neoplasms**


Senior Medical Director review 8/2017
Genetic Testing for Myeloproliferative Neoplasms


Policy Implementation/Update Information

**Tyrosine Kinase Mutation Analysis in Myeloproliferative Neoplasms**

7/19/11 New policy. “JAK2 tyrosine kinase and MPL mutation testing may be considered medically necessary in the diagnosis of patients presenting with clinical, laboratory, or pathological findings suggesting classic forms of myeloproliferative neoplasms (MPN), that is, polycythemia vera (PV), essential thrombocythemia (ET), or primary myelofibrosis (PMF). JAK2 tyrosine kinase and MPL mutation testing may be considered investigational in all other circumstances” Notification given July 19, 2011. Policy effective October 25, 2011. (btw)

1/10/12 Specialty Matched Consultant Advisory Panel review 11/30/11. No change to policy. Added new 2012 CPT code, 81275, to the “Billing/Coding” section. (btw)

1/24/12 Removed 81275 from Billing/Coding section as it does not pertain to this policy. Added new 2012 CPT code, 81270 to Billing/Coding section. (btw)

**JAK2 and MPL Mutation Analysis in Myeloproliferative Neoplasms**

4/17/12 Policy name changed from “Tyrosine Kinase Mutation Analysis in Myeloproliferative Neoplasms” to “JAK2 and MPL Mutation Analysis in Myeloproliferative Neoplasms”. MPL is not a tyrosine kinase. No change to policy intent. Policy Guidelines updated. Medical Director review 3/29/12. Reference added. (btw)

12/28/12 Specialty Matched Consultant Advisory Panel review 12/4/2012. No change to policy intent. Added CPT codes 81402, 81403, and G0452 to Billing/Coding section. (btw)

4/1/2013 Reference added. (btw)

12/10/13 Specialty Matched Consultant Advisory Panel review 11/20/2013. Policy Guidelines revised. No change to policy intent. (btw)

4/15/14 Reference added. (btw)

12/9/14 Specialty Matched Consultant Advisory Panel review 11/24/2014. No change to policy intent. (lpr)

3/31/15 Updated the “Description, Regulatory Status, and Policy Guidelines” sections. No change to policy intent. Reference added. (lpr)

**Policy Retitled: Genetic Testing for Myeloproliferative Neoplasms**

12/30/15 Specialty Matched Consultant Advisory Panel review 11/18/2015. Policy title changed from “JAK2 and MPL Mutation Analysis in Myeloproliferative Neoplasms” to “Genetic Testing for Myeloproliferative Neoplasms.” No change to policy statement or intent. Added CPT code 81219 to Billing/Coding section effective 1/1/2016. (lpr)

12/30/16 Specialty Matched Consultant Advisory Panel review 11/30/2016. No change to policy intent. (lpr)

7/28/17 Added CPT codes 0016U, 0017U to Billing/Coding section. (lpr)
Genetic Testing for Myeloproliferative Neoplasms

8/25/17 Updated Description and Policy Guidelines sections. Under “When Covered” section: added CALR testing; clarified JAK2 testing is medically necessary for PV, ET, and PMF; MPL testing is medically necessary for ET and PMF. Under “When Not Covered” section: added statement “Panel testing for myeloproliferative disorders is considered not medically necessary.” Referenced related policy “Molecular Panel Testing of Cancers to Identify Targeted Therapies.” Senior Medical Director review 8/2017. Reference added. (lpr)

12/15/17 Specialty Matched Consultant Advisory Panel review 11/29/2017. No change to policy statement. (lpr)

Medical policy is not an authorization, certification, explanation of benefits or a contract. Benefits and eligibility are determined before medical guidelines and payment guidelines are applied. Benefits are determined by the group contract and subscriber certificate that is in effect at the time services are rendered. This document is solely provided for informational purposes only and is based on research of current medical literature and review of common medical practices in the treatment and diagnosis of disease. Medical practices and knowledge are constantly changing and BCBSNC reserves the right to review and revise its medical policies periodically.