Chromoendoscopy as an Adjunct to Colonoscopy

Description of Procedure or Service

Chromoendoscopy refers to the application of dyes or stains during endoscopy to enhance tissue differentiation or characterization. When used with colonoscopy, the intent is to increase the sensitivity of the procedure by facilitating the identification of mucosal abnormalities. There are two types of chromoendoscopy; one involves actual spraying of dyes or stains through the working channel of an endoscope. The other type, known as virtual chromoendoscopy, uses a computer algorithm to simulate different colors of light that result from dye or stain spraying.

Background

Colonoscopy, a procedure during which colonic and rectal polyps can be identified and removed, is considered the criterion standard test for colorectal cancer screening and diagnosis of colorectal disease. However, colonoscopy is an imperfect procedure. A recent systematic review pooled findings from tandem (i.e. back-to-back) colonoscopy studies and found that 22% of polyps were missed on the first colonoscopy. Most of the missed polyps, though, were small and, thus, had a lower risk of becoming cancerous. The pooled miss rate by polyp size was 2% for polyps 10 mm and larger, 13% for polyps 5-10 mm, and 26% for polyps 1-5 mm.

Several adjunct endoscopic techniques, including chromoendoscopy, could potentially enhance the sensitivity of colonoscopy. Chromoendoscopy, also known as chromoscopy and chromocolonoscopy, refers to the application of topical stains or dyes during endoscopy in order to enhance the differentiation and characterization and facilitate the identification of mucosal abnormalities. Chromoendoscopy may be particularly useful for detecting flat or depressed lesions. Standard colonoscopy uses white light to view the colon. In chromoendoscopy, stains are applied, resulting in color highlighting of areas of surface morphology of epithelial tissue. The dyes or stains are applied via a spray catheter that is inserted down the working channel of the endoscope. Chromoendoscopy can be used in the whole colon (pancolonic chromoendoscopy) on an untargeted basis or can be directed to a specific lesion or lesions (targeted chromoendoscopy). Chromoendoscopy differs from endoscopic tattooing in that the former uses transient stains, whereas tattooing involves the use of a long-lasting pigment for future localization of lesions.

Stains and dyes used in chromoendoscopy can be placed in the following categories:

- **Absorptive**: These stains are preferentially absorbed by certain types of epithelial cells.
- **Contrast**: These stains seep through mucosal crevices and highlight surface topography.
- **Reactive**: These stains undergo chemical reactions when in contact with specific cellular constituents, which results in a color change.

Reactive stains are primarily used to identify gastric abnormalities and are not used with colonoscopy. Indigo carmine, a contrast stain, is the most commonly used stain with colonoscopy to enhance the detection of colorectal neoplasms. Several absorptive stains are also used with colonoscopy. Methylene blue, which stains the normal absorptive epithelium of the small intestine and colon, has been used to detect colonic neoplasia and to aid in the detection of intraepithelial neoplasia.
Chromoendoscopy as an Adjunct to Colonoscopy

individuals with chronic ulcerative colitis. In addition, crystal violet (also known as gentian violet), stains cell nuclei and has been applied in the colon to enhance visualization of pit patterns (i.e. superficial mucosal detail).

Potential applications of chromoendoscopy as an alternative to standard colonoscopy include:

- Diagnosis of colorectal neoplasia in symptomatic patients at increased risk of colorectal cancer due to family history of colorectal cancer, personal history of adenomas, etc.
- Identification of mucosal abnormalities for targeted biopsy as an alternative to multiple random biopsies in patients with inflammatory bowel disease (IBD)
- Screening the general population for colorectal cancer

The equipment used in regular chromoendoscopy is widely available. Several authors of review articles and technology assessments have stated that, although the techniques are simple, procedure, e.g. concentration of dye and amount of dye sprayed, is variable and classification of mucosal staining patterns for identifying specific conditions is not standardized.

Virtual chromoendoscopy (also called electronic chromoendoscopy) involves imaging enhancements with endoscopy systems that could potentially be an alternative to dye spraying. One system is the Fujinon® Intelligent Color Enhancement (FICE®) feature (Fujinon, Inc.). This technology uses post-processing computer algorithms to modify the light reflected from the mucosa from conventional white light to various other wavelengths.

Regulatory Status

In August 2014, the Fujifilm EPX-4440HD Digital Video Processor with FICE and Light Source was cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process. FDA documents state that FICE can be used to supplement white-light endoscopy but is not intended to replace histopathologic sampling as a means of diagnosis.

Prior to this, on February 7, 2011, FDA had sent an Urgent Medical Device Corrective Action letter advising users that the FICE feature, which had been added by the manufacturer to enhance the appearance of images for virtual chromoendoscopy, should not be used, because this feature had not been reviewed under the 510(k) process.

In April 2003, the i-scan™ (Pentax), used for virtual chromoendoscopy, was cleared for marketing by FDA through the 510(k) process. This is a digital image enhancement technology and is part of the Pentax EPK-i5010 Video Processor. The i-scan has several modes that digitally enhance images in real–time during endoscopy. FDA documents state that i-scan is intended as an adjunct following white-light endoscopy and is not intended to replace histopathologic analysis.

No dye or stain product has been specifically approved by the FDA for use in chromoendoscopy.

Related Policies

Confocal Laser Endomicroscopy

***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician.

Policy

Chromoendoscopy and virtual chromoendoscopy are considered investigational as an adjunct to diagnostic or surveillance colonoscopy. BCBSNC does not provide coverage for investigational services or procedures.
Chromoendoscopy as an Adjunct to Colonoscopy

Benefits Application
This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy.

When Chromoendoscopy as an Adjunct to Colonoscopy is covered
Not applicable.

When Chromoendoscopy as an Adjunct to Colonoscopy is not covered
Chromoendoscopy and virtual chromoendoscopy are considered investigational as an adjunct to diagnostic or surveillance colonoscopy.

Policy Guidelines
The evidence for chromoendoscopy in patients who have an average risk of colorectal cancer undergoing colonoscopy includes 1 randomized controlled trial (RCT) focused on this population. Relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, and change in disease status. The single RCT did not find that high-definition chromoendoscopy identified more clinically meaningful lesions than high-definition white-light colonoscopy. The evidence is insufficient to determine the effects of the technology on health outcomes.

The evidence for chromoendoscopy in patients who have an increased risk of colorectal cancer undergoing colonoscopy includes multiple RCTs, back-to-back colonoscopy studies and systematic reviews. Relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, and change in disease status. The single RCT did not find that high-definition chromoendoscopy identified validity, and change in disease status. A Cochrane review of trials comparing chromoendoscopy with standard colonoscopy in high-risk patients (but excluding those with inflammatory bowel disease) found a significantly higher rate of adenoma detection and rate of 3 or more adenomas with chromoendoscopy compared with standard colonoscopy. The evidence for detecting larger polyps, either defined as greater than 5 mm or greater than 10 mm, is less robust. While 1 study reported a significantly higher detection rate for polyps greater than 5 mm, no studies reported increased detection for polyps greater than 10 mm. The evidence is insufficient to determine the effects of the technology on health outcomes.

The evidence for chromoendoscopy in patients who have inflammatory bowel disease undergoing colonoscopy includes observational studies and meta-analyses of observational data. Relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, and change in disease status. The meta-analysis found a statistically significant higher yield of chromoendoscopy over white-light colonoscopy for detecting dysplasia. This evidence establishes that chromoendoscopy improves the polyp detection rate, but it is unclear whether the additional polyps detected are clinically important and therefore, whether the improved polyp detection rate will translate to improved health outcomes. In addition, there are concerns about the comparison group used in some of these trials. It is uncertain whether the control groups received optimal colonoscopy; therefore, the improved detection rate by chromoendoscopy may be a function of suboptimal standard colonoscopy. The evidence is insufficient to determine the effects of the technology on health outcomes.

The evidence for virtual chromoendoscopy in patients who have an average risk of colorectal cancer undergoing colonoscopy, an increased risk of colorectal cancer undergoing colonoscopy, or with
Chromoendoscopy as an Adjunct to Colonoscopy

inflammatory bowel disease undergoing colonoscopy includes several RCTs. Relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, other test performance measures, and change in disease status. The available RCTs in these populations have not found that virtual chromoendoscopy improves the detection of clinically important polyps compared with standard white-light colonoscopy. Moreover, there is lack of studies on the impact of virtual chromoendoscopy on CRC incidence or mortality compared with standard colonoscopy. The evidence is insufficient to determine the effects of the technology on health outcomes.

Billing/Coding/Physician Documentation Information

This policy may apply to the following codes. Inclusion of a code in this section does not guarantee that it will be reimbursed. For further information on reimbursement guidelines, please see Administrative Policies on the Blue Cross Blue Shield of North Carolina web site at www.bcbsnc.com. They are listed in the Category Search on the Medical Policy search page.

Applicable codes: No specific code.

There is no specific code for chromoendoscopy. The additional work of the chromoendoscopy would probably be reported with the unlisted CPT code 44799.

BCBSNC may request medical records for determination of medical necessity. When medical records are requested, letters of support and/or explanation are often useful, but are not sufficient documentation unless all specific information needed to make a medical necessity determination is included.

Scientific Background and Reference Sources

Senior Medical Director review 12/2014
Medical Director review 11/2015
Medical Director review 11/2016
Policy Implementation/Update Information

<table>
<thead>
<tr>
<th>Date</th>
<th>Update Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/24/12</td>
<td>New policy issued. Chromoendoscopy and virtual chromoendoscopy are considered investigational as an adjunct to diagnostic or surveillance colonoscopy. Notification given 7/24/12 for policy effective date of 10/30/12. (sk)</td>
</tr>
<tr>
<td>5/28/13</td>
<td>Related policy added. Reference added. No change to policy statement. (sk)</td>
</tr>
<tr>
<td>11/12/13</td>
<td>Specialty Matched Consultant Advisory Panel review 10/16/2013. No change to policy statement. (sk)</td>
</tr>
<tr>
<td>5/27/14</td>
<td>Reference added. No change to Policy statement. (sk)</td>
</tr>
<tr>
<td>4/28/15</td>
<td>References updated. Description section revised. Policy Statement remains unchanged. (td)</td>
</tr>
<tr>
<td>4/29/16</td>
<td>Description section revised. Policy Guidelines revised extensively. References updated. (td)</td>
</tr>
</tbody>
</table>

Medical policy is not an authorization, certification, explanation of benefits or a contract. Benefits and eligibility are determined before medical guidelines and payment guidelines are applied. Benefits are determined by the group contract and subscriber certificate that is in effect at the time services are rendered. This document is solely provided for informational purposes only and is based on research of current medical literature and review of common medical practices in the treatment and diagnosis of disease. Medical practices and knowledge are constantly changing and BCBSNC reserves the right to review and revise its medical policies periodically.